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A system of periodic coefficients functional differential equations is used to model
the single microorganism in the chemostat environment with a periodic nutrient and
antibiotic input. Furthermore, the total toxic action on the microorganism expressed
by an integral term is considered in our system. Based on the technique of analysis, we
obtain sufficient conditions which guarantee the permanence of the system and extinc-
tion of the microorganism.
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1. Introduction

As we all know that the nature of disease is to break the balance of the
ecosystem (organism and its internal and external environment). And the over
controlling of all factors, which have some influence on the organism, can lead
to the imbalance. For the purpose of keeping this balance, there are many people
are concerning the dynamic behavior of one or more populations of organisms.

The biosphere inside the organism are characterized as comparatively sea-
led, densely populated, short-generated, and naturally chemostated, etc. When
the internal microorganism populations are in disproportion or disease appear.
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In order to cure such diseases, antibiotics are usually applied to restore the
balance among the internal microorganism populations. Antibiotics have been
used since the 1940s, and the first one is penicillin. According to experiments
with electronic microscope and radioactive penicillin, It is confirmed that peni-
cillin can destroy the organism synthesis on the wall of the sensitive bacteria’s
L-shaped cell, then result in the death of the cell. Also, in most populations of
organisms, the accumulation of metabolic products may seriously inconvenience
a population and one of the consequences can be a fall in the birth and an
increase in the mortality rate. But how to measure the influence of antibiotics
and the total toxic action on the amount of microorganism populations?

On the other hand, since biological and environmental parameters are
naturally subject to fluctuation in time, the effects of a periodically varying envi-
ronment are considered as important selective forces on systems in a fluctua-
ting environment. Hence more realistic and interesting models should take into
account the seasonality of the changing environment [1, 2].

With the idea of chemostat model [3–14] and ecotoxicology [15–17], when
the nutrient and antibiotic are both input periodically, we establish a non-
autonomous chemostat model with antibiotic and the total toxic action on birth
and death rates of the single microorganism. By using the technique of analysis,
we determine sufficient conditions which guarantee the permanence of the sys-
tem and extinction of the microorganism. These results explain, to some degree,
the phenomena – the disease in clinical therapy will exist for ever and go away.

This paper is organized as follows. In section 2, we describe our model and
the preliminary results. In section 3, we obtain sufficient conditions for the per-
manence of the system and extinction of the microorganism. Finally, a brief dis-
cussion is given in last section.

2. Mathematical model and the preliminary results

In this paper, we consider the following periodic chemostat model
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S′(t) = (
S0(t)− S(t)

)
D(t)− p1(t)φ1(t, S(t))S(t)x(t),

R′(t) = (
R0(t)− R(t)

)
D(t)− p2(t)φ2(t, R(t))R(t)x(t),

x′(t) = x(t)
[
−D(t)+ h1(t)φ1(t, S(t))S(t)− h2(t)φ2(t, R(t))R(t)

−p(t)x(t)− q(t)
(∫ 0

−∞ k(s)x(t + s)ds
)n]

,

(1)

where S(t) is the nutrient concentration, R(t) the antibiotic concentration, x(t)
is the microorganism concentration. S0(t) and R0(t) denote the input concentra-
tion of nutrient S and, respectively, antibiotic R. D(t) is the dilution(or washout)
rate. pi(t) and hi(t)(i = 1, 2) give the coefficients that relate to the conversion
rate of the nutrient and antibiotic. Also, n ∈ (0,∞). S0(t), R0(t), D(t), p(t),
pi(t)(i = 1, 2), φ1(t, S), φ2(t, R), hi(t)(i = 1, 2), and q(t) are all ω-periodic
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and continuous for t�0, S0(t), R0(t), D(t), p(t), pi(t)(i = 1, 2), hi(t)(i=1, 2),
and q(t) are all positive, and φ1(t, S) and φ2(t, R) are non-negative. The terms
φ1(t, S)S and φ2(t, R)R which called the functional response describe the num-
ber of the nutrient S and the antibiotic R consumed per microorganism in unit
time, respectively. We assume that there exists a positive constant L such that

0 < φ1(t, S) < L, 0 < φ2(t, R) < L,
∂φ1(t, S)

∂S
� 0,

∂φ2(t, R)

∂R
� 0

for S,R > 0. (2)

The last two conditions in (2) implies that, as the nutrient and antibiotic popu-
lations increase, the consumption rates of nutrient and antibiotic per microorga-
nism increase, respectively. Some explicit forms [10] for the functional response
that have been used are

Xφ(t,X) = µm(t)X

Km(t)+X
Monod(1942),

Xφ(t,X) = µm(t)X

Km(t)+X + X2

Ki(t)

Monod Haldane(1968),

Xφ(t,X) = µm(t)X exp(− X
Ki(t)

)

Km(t)+X
T essiet (1936),

Xφ(t,X) =

⎧
⎪⎪⎨

⎪⎪⎩

µm(t)X

K(t)+X
, X < Xθ,

µm(t)X

K(t)+X
− i(t)(X −Xθ), X > Xθ

T seng(1975),

Xφ(t,X) = a(t)Xq(q < 1) Rosenzweig(1971).

The delay–kernel k(s) is a non–negative bouned function defined on R−=(−∞, 0]
and integrable, and describes the residual intensity of pollution. The present of
the distributed time delay must not affect the equilibrium values, so we norma-
lize the kernel such that

∫ 0

−∞
k(s)ds = 1. (3)

Let C+ =
{
φ = (ψ1, ψ2, ψ3) : ψi(t) is continuous and non-negative on R−

and ψi(0) > 0, i = 1, 2, 3
}

. In this paper, we always assume that solutions of (1)
satisfy the following initial conditions

S(s) = ψ1(s), R(s) = ψ2(s), x(s) = ψ3(s), (ψ1, ψ2, ψ3) ∈ C+, s ∈ R−. (4)
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Before stating and proving our main results, we give the following defini-
tions, notations and Lemmas which will be useful.

Let f (t) be a continuous ω-periodic function defined on [0,+∞), we set

Aω(f ) = ω−1
∫ ω

0
f (t)dt, f U = max

t∈[0,ω]
f (t), f L = min

t∈[0,ω]
f (t).

Definition 2.1. System (1) is said to be permanent if there exists a compact
region D ⊂ intΩ(Ω ⊂ R3+

.= {
(z1, z2, z3) : zi � 0, i = 1, 2, 3

}
) such that

every solution of system (1) with initial conditions (4) will eventually enter and
remain in region D.

Lemma 2.2. The system
{
S′(t) = a(t)S0(t)− b(t)S(t),

R′(t) = c(t)R0(t)− d(t)R(t),
(5)

in which a(t), b(t), c(t), d(t) are all continuous positive ω–periodic for t � 0, has
a positive ω-periodic solution (S̃(t), R̃(t)) which is globally asymptotically stable
with respect to R2+.

Proof. This Lemma is easy to be proved, then the process of proving is omitted.
This completes the proof.

Lemma 2.3. For the following non-autonomous differential equation

u̇ = u[a1(t)− b1(t)u− c1(t)u
n], (6)

where a1(t), b1(t), and c1(t) are ω−periodic continuous functions, cL1 , b
L
1 � 0,

Aω(b1) > 0 and n ∈ (0,∞), there is a constant M∗ > 0 such that every positive
solution u(t) of (6) satisfies lim supt→∞ u(t) � M∗.

Proof. The proof is obvious, in fact, u′ = u[a1(t)−b1(t)u− c1(t)u
n] � u[a1(t)−

b1(t)u]. From [18], we note that there exists a constant M∗ such that the solution
x(t) of the Logistic equation

ẋ = x[a1(t)− b1(t)x]
satisfies

lim sup
t→∞

x(t) � M∗.

Using the comparison theorem of ordinary differential equations, this completes
the proof.
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Lemma 2.4. There exist positive constants MS , MR, and Mx such that

lim sup
t→∞

S(t) � MS, lim sup
t→∞

R(t) � MR, lim sup
t→∞

x(t) � Mx.

Proof. Obviously, R3+ is a positively invariant set of system (1). Given any posi-
tive solution (S(t), R(t), x(t)) of (1) with initial conditions (4), we have

{
S′ �

(
S0(t)− S(t)

)
D(t),

R′ �
(
R0(t)− R(t)

)
D(t).

Next consider the following auxiliary equations
{
u′

1 = (
S0(t)− u1(t)

)
D(t),

u′
2 = (

R0(t)− u2(t)
)
D(t).

(7)

According to lemma 2.2, it follows that (7) has a globally asymptotically stable
positive ω-periodic solution (S∗(t), R∗(t)). Let (u1(t), u2(t)) be the solution of
(7) with u1(0) = S(0), u2(0) = R(0). By the vector comparison theorem [19],
we obtain

S(t) � u1(t), R(t) � u2(t)

for all t � 0. From the global asymptotic stability of (S∗(t), R∗(t)), for any posi-
tive constant ε, there exists a T0 > 0 such that for all t � T0,

|u1(t)− S∗(t)| < ε, |u2(t)− R∗(t)| < ε.

Hence, we derive

S(t) � S∗(t)+ ε, R(t) � R∗(t)+ ε for all t � T0.

Let

MS
.= max
t∈[0,ω]

{S∗(t)+ ε},

MR
.= max
t∈[0,ω]

{R∗(t)+ ε}

we then get

S(t) � MS, R(t) � MR. (8)

Consequently,

lim sup
t→∞

S(t) � MS



H. Zhang and L.Chen / Toxic action and antibiotic in the chemostat 1261

and

lim sup
t→∞

R(t) � MR.

In addition, let α(t) = −D(t)+h1(t)φ1(S
∗(t)+ ε)(S∗(t)+ ε) and let the constant

τ > 0 be such that
∫ 0

−τ
k(s) exp(αUs)ds > 0. (9)

For t � T0 it follows from (2) that

x′(t) � x(t)
[

−D(t)+ h1(t)φ1(S
∗(t)+ ε)

(
S∗(t)+ ε

)] = xα(t).

Hence, for any t � t + s � T0 + τ(s � 0) we obtain

x(t + s) � x(t) exp
∫ t+s

t

α(ξ)dξ � x(t) exp(αUs).

It follows from the above inequality that for any t � T0 + 2τ , we have

x′ � x

[

α(t)− p(t)x(t)− q(t)

(∫ 0

−∞
k(s)x(t + s)ds

)n]

� x

[

α(t)− p(t)x(t)− q(t)

(∫ 0

−τ
k(s)x(t + s)ds

)n]

� x

[

α(t)− p(t)x(t)− q(t)

(∫ 0

−τ
k(s) exp(αUs)ds

)n

xn(t)

]

.

Let u(t) be the solution of the auxiliary equation

u̇ = u

[

α(t)− p(t)u(t)− q(t)

(∫ 0

−τ
k(s) exp(αUs)ds

)n

un(t)

]

with the initial condition u(T0 + 2τ) = x(T0 + 2τ), then we derive

x(t) � u(t) for all t � T0 + 2τ. (10)

From lemma 2.3, we know that there exists a constant Mx > 0 such that

lim sup
t→∞

u(t) � Mx.

Consequently, by (10) we have

lim sup
t→∞

x(t) � Mx. (11)

This completes the proof.
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Lemma 2.5. There exist positive constants ρS and ρR(ρS < MS, ρR < MR) such
that

lim inf
t→∞ S(t) � ρS

and

lim inf
t→∞ R(t) � ρR.

Proof. By lemma 2.4, there exists a positive constant T1 > T0 + 2τ such that

0 < x(t) � Mx f or t � T1.

Then we derive that
{
S′(t)�

(
S0(t)−S(t))D(t)−p1(t)LS(t)Mx= − (

D(t)+LMxp1(t)
)
S(t)+D(t)S0(t),

R′(t)�
(
R0(t)−R(t))D(t)−p2(t)LR(t)Mx= − (

D(t)+LMxp2(t)
)
R(t)+D(t)R0(t)

for t � T1. By lemma 2.2, the auxiliary system
{
u′

1(t) = −(
D(t)+ LMxp1(t)

)
u1(t)+D(t)S0(t),

u′
2(t) = −(

D(t)+ LMxp2(t)
)
u2(t)+D(t)R0(t)

has a positive ω–periodic solution (u∗
1(t), u

∗
2(t)), which is globally asymptotically

stable. Hence there exists a positive T2 > T1 such that

S(t) > ρS
.= min
t∈[0,ω]

{
u∗

1(t)

2

}

and

R(t) > ρR
.= min
t∈[0,ω]

{
u∗

2(t)

2

}

.

This completes the proof.

Lemma 2.6. Suppose that

Aω

( −D(t)+ h1(t)φ1(t, S
∗(t))S∗(t)− h2(t)φ2(t, R

∗(t))R∗(t)
)
> 0, (12)

in which S∗(t) and R∗(t) are defined in Lemma 2.4. Then there is a positive
constant �x (�x < Mx) such that

lim sup
t→∞

x(t) � �x. (13)
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Proof. By (12), we can choose a positive constant ε0 � 1
2 mint∈[0,ω]{S∗(t),

R∗(t)}, where (S∗(t), R∗(t)) is the unique positive solution of system (7) such that

Aω(ψε0(t)) > 0, (14)

where

ψε0(t) = −D(t)+ h1(t)φ1(t, S
∗(t)− ε0)(S

∗(t)− ε0)

−h2(t)φ2(t, (R
∗(t)+ ε0))(R

∗(t)+ ε0)− (2ε0)
nq(t)− ε0p(t).

Consider the following auxiliary system with a positive parameter µ
{
u′

1(t) = −(
D(t)+ 2Lµp1(t)

)
u1(t)+D(t)S0(t),

u′
2(t) = −(

D(t)+ 2Lµp2(t)
)
u2(t)+D(t)R0(t).

(15)

By lemma 2.2, (15) has a positive ω–periodic solution (u∗
1µ(t), u

∗
2µ(t)), which is

globally asymptotically stable. Let (u1µ(t), u2µ(t)) be the solution of (15) with
initial condition u1µ(0) = S∗(0) and u2µ(0) = R∗(0), where (S∗(t), R∗(t)) is the
positive periodic solution of (7). Hence, for the above ε0, there exists T3 > T2
such that

|uiµ(t)− u∗
iµ(t)| < ε0/4 (16)

for t � T3, i = 1, 2. According to the continuity of the solution in the parameter
µ,

we then have u1µ(t) → S∗(t) and u2µ(t) → R∗(t) uniformly in [T3, T3 + ω]
as µ → 0. Hence for ε0 > 0, there exists µ0 = µ0(ε0) (0 < µ0 < ε0) such that

|u1µ(t)− S∗(t)| < ε0/4, |u2µ(t)− R∗(t)| < ε0/4, 0 � µ � µ0 (17)

t ∈ [T3, T3 + ω]. Thus from (16) and (17), we get

|u∗
1µ(t)− S∗(t)| < ε0/2, |u∗

2µ(t)− R∗(t)| < ε0/2, 0 � µ � µ0

t ∈ [T3, T3 + ω]. Since u∗
iµ(t), S

∗(t), and R∗(t) are all ω-periodic, we have

|u∗
1µ(t)− S∗(t)| < ε0/2, |u∗

2µ(t)− R∗(t)| < ε0/2, 0 � µ � µ0 (18)

t � 0.
Choose a constant µ1(0 < µ1 < µ0, µ1 < ε0), from (18), we derive

u∗
1µ1
(t) � S∗(t)− ε0

2
, u∗

2µ1
(t) � R∗(t)− ε0

2 ,

u∗
1µ1
(t) � S∗(t)+ ε0

2
, u∗

2µ1
(t) � R∗(t)+ ε0

2

(19)
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for t � 0.
Suppose that the conclusion (13) is false. Otherwise, for the above ε0 there exists
φ ∈ C+ such that

lim sup
t→∞

x(t, φ) < µ1,

where
(
S(t, φ), R(t, φ), x(t, φ)

)
is the solution of (1) with the initial condition(

S(θ̂), R(θ̂), x(θ̂)
) = φ(θ̂). So there exists a constant T4(> T3) such that

x(t, φ) < 2µ1 for t � T4. (20)

Then we get

{
S′(t) � −(

D(t)+ 2Lµ1p1(t)
)
u1(t)+D(t)S0(t),

R′(t) � −(
D(t)+ 2Lµ1p2(t)

)
u2(t)+D(t)R0(t).

(21)

Also, from
∫ 0
−∞ k(s)ds = 1, we can choose a positive constant τ0 such that

H0

∫ −τ0

−∞
k(s)ds < µ1 (22)

in which

H0 = sup{x(t + s)|t � 0, s � 0}.

Let (u1µ1, u2µ1) be the solution of (15) with µ = µ1 and (u1µ1(T4), u2µ1(T4)) =
(S(T4), R(T4)), then by the vector comparison theorem, we obtain

S(t, φ) � u1µ1(t), R(t, φ) � u2µ1(t) (23)

t � T4. By the global asymptotic stability of (u∗
1µ1
(t), u∗

2µ1
(t)), for the given ε0 >

0 there exists T6 > T5 such that

uiµ1(t) > u∗
iµ1
(t)− ε0/2, t � T6, i = 1, 2

and hence , by (18), we derive

S(t, φ) > S∗(t)− ε0, R(t, φ) > R∗(t)− ε0, t � T6. (24)
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Therefore, for t � T6 + τ0, we have

x′(t, φ) = x(t, φ)

[

−D(t)+ h1(t)φ1(t, S(t))S(t)− h2(t)φ2(t, R(t))R(t)

−p(t)x(t, φ)− q(t)

(∫ 0

−∞
k(s)x(t + s)ds

)n]

� x(t, φ)

[

−D(t)+ h1(t)φ1(t, (S
∗(t)− ε0))(S

∗(t)− ε0)

−h2(t)φ2(t, (R
∗(t)+ ε0))(R

∗(t)+ ε0)− p(t)u1

−q(t)
(∫ −τ0

−∞
k(s)x(t + s)ds +

∫ 0

−τ0

k(s)x(t + s)ds
)n]

� x(t, φ)

[

−D(t)+ h1(t)φ1(t, (S
∗(t)− ε0))(S

∗(t)− ε0)

−h2(t)φ2(t, (R
∗(t)+ ε0))(R

∗(t)+ ε0)− p(t)u1

−q(t)
(

H0

∫ −τ0

−∞
k(s)ds + µ1

∫ 0

−τ0

k(s)ds
)n]

> x(t, φ)

[

−D(t)+ h1(t)φ1(t, (S
∗(t)− ε0))(S

∗(t)− ε0)

−h2(t)φ2(t, (R
∗(t)+ ε0))(R

∗(t)+ ε0)− p(t)ε0

−(
2ε0

)n
q(t)

]

= y(t, φ)ψε0(t).

Integrating the above inequality from T6 + τ0 to t yields

x(t, φ) � x(T6 + τ0) exp
( ∫ t

T6+τ0

ψε0(s)ds
)

.

It follows from (14) that x(t, φ) → ∞ as t → ∞, which is a contradiction. This
completes the proof.

Lemma 2.7. Assume that (12) holds. Then there exists a positive constant δx
(δx < My) such that any solution (S(t), R(t), x(t)) of system (1) with initial
condition satisfies

lim inf
t→∞ x(t) � δx. (25)

Proof. Suppose that (25) is not true, there must exist a sequence {φk} ⊂ C+
such that

lim inf
t→∞ x(t, φk) <

�x

(k + 1)2
, k = 1, 2, . . .
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and by lemma 2.6, we have lim supt→∞ x(t, φk) > �x , k = 1, 2, . . . . Hence, for
each k, we choose two time sequences {s(k)q }and{t (k)q }, satisfying 0 < s

(k)

1 < t
(k)

1 <

s
(k)

2 < t
(k)

2 < · · · < s
(k)
q < t

(k)
q < · · · and s(k)q → ∞ as q → ∞, and

x(s(k)q , φk) = �x

k + 1
, x(t(k)q , φk) = �x

(k + 1)2
, (26)

�x

(k + 1)2
< x(t, φk) <

�x

k + 1
, t ∈ (s(k)q , t (k)q ). (27)

By lemma 2.4, for a given positive integer k, there exists T̃ (k) > 0 such that
S(t, φk) � MS , R(t, φk) � MR, and x(t, φk) � Mx for all t � T̃ (k). Further,
there is a constant σ (k) > 0 such that

H
(k)

1

∫ −σ (k)

−∞
k(s) ds < Mx,

where H(k)

1 = sup{x(t + s, φk) : t � 0, s � 0}. Because of s(k)q → ∞ as q → ∞,
there is a positive integer K(k)

1 such that s(k)q > T̃ (k) + σ (k) as q � K
(k)

1 . For any
t � T̃ (k) + σ (k), we have

x′(t, φk) � x(t, φk)

[

−D(t)− h2(t)LMR − p(t)x(t, φk)

−q(t)
(∫ 0

−∞
k(s)x(t + s, φk)ds

)n]

� x(t, φk)

[

−D(t)− h2(t)LMR − p(t)Mx − q(t)

(∫ −σ (k)

−∞
k(s)x(t + s, φk)ds

+
∫ 0

−σ (k)
k(s)x(t + s, φk)ds

)n]

� x(t, φk)
[ −D(t)− h2(t)LMR − p(t)Mx − (2My)

nq(t)
]
.

Integrating the above inequality from s
(k)
q to t (k)q , for any q � K

(k)

1 we get

x(t(k)q , φk) � x(s(k)q , φk) exp
(∫ t

(k)
q

s
(k)
q

[−D(t)− h2(t)LMR − p(t)Mx − (2My)
nq(t)]dt

)

.

Obviously, we derive

∫ t
(k)
q

s
(k)
q

[D(t)+ h2(t)LMR + p(t)Mx + (2My)
nq(t)]dt � ln(k + 1) for q � K

(k)

1 .

Hence, in view of the periodicity of D(t), h2(t), p(t), and q(t), we get

t (k)q − s(k)q → ∞, as k → ∞, q � K
(k)

1 . (28)
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By (14), (26), and (28), there are positive constants T and N0 such that

x(s(k)q , φk) = �x

k + 1
< ε0, (29)

t (k)q − s(k)q > 2T (30)

and
∫ κ

0
ψε0(t)dt > 0 (31)

for k � N0, q � K
(k)

1 , and κ > T . (29) implies that

x(t, φk) < ε0, t ∈ [s(k)q , t (k)q ] (32)

for k � N0, q � K
(k)

1 . Noticing that s(k)q → ∞ as q → ∞ and
∫ 0
−∞ k(s)ds = 1,

for any k there exists K(k)

2 > K
(k)

1 such that for all q > K
(k)

2 , we obtain

H
(k)

1

∫ T̃ (k)−s(k)q −σ 0

−∞
k(s)ds <

1
2
ε0 (33)

and

Mx

∫ −σ 0

−∞
k(s)ds <

1
2
ε0, (34)

where σ 0 > 0. By (30), there exists a positive integer N1 such that

t (k)q − s(k)q > σ 0 for k > N1, q � K
(k)

2 .

For k > N1, q � K
(k)

2 , and s(k)q + σ 0 � t � t
(k)
q , it follows from (32) that

{
S′(t, φk) � −(

D(t)+ Lε0p1(t)
)
S(t, φk)+D(t)S0(t),

R′(t, φk) � −(
D(t)+ Lε0p2(t)

)
R(t, φk)+D(t)R0(t).

(35)

Let (u1ε0, u2ε0) be the solution of (15) with µ= ε0
2 and (u1µ1(s

(k)
q +τ 0), u2µ1(s

(k)
q +

τ 0)) = (S(s
(k)
q + τ 0), R(s

(k)
q + τ 0)), then by the vector comparison theorem, we

obtain

S(t, φk) � u1ε0(t), R(t, φk) � u2ε0(t), t ∈ [s(k)q + τ 0, t (k)q ]. (36)

From limq→∞ s
(k)
q = ∞ and Lemmas 2.4 and 2.5, we obtain that for any k

there is a K(k)

3 > K
(k)

2 such that for any q � K
(k)

3 ,

ρS � S(s(k)q + σ 0, φk) � MS, ρR � R(s(k)q + σ 0, φk) � MR.
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For µ = ε0
2 , equations (15) has a globally asymptotically stable positive

ω-periodic solution (u∗
1µ(t), u

∗
2µ(t)). From the periodicity of (15) we know that

the periodic solution (u∗
1µ(t), u

∗
2µ(t)) also is globally uniformly asymptotically

stable. Hence, there is a T7 > T , and T7 is independent of any k and q, such
that

u1ε0(t) > u∗
1µ(t)− ε0

2

for all t � T7 + s
(k)
q + σ 0 and q � K

(k)

3 . Consequently, by (19), we have

u1ε0(t) > S∗(t)− ε0 (37)

for all t � T7 + s
(k)
q + σ 0 and q � K

(k)

3 . By (28), there is a N2 � N1 such that
t
(k)
q − s

(k)
q � 2T for all k � N2 and q � K

(k)

3 , where T � T7 + σ 0. Hence, from
(36) and (37) we obtain

S(t, φk) � S∗(t)− ε0 (38)

for all t ∈ [T + s
(k)
q , t

(k)
q ], k � N2, and q � K

(k)

3 .
Since, for any t ∈ [T + s

(k)
q + σ0, t

(k)
q ], k � N2 and q � K

(k)

3 , by (1), (33),
and (34), we have

x′(t, φk) = x(t, φk)

[

−D(t)+ h1(t)φ1(t, S(t, φk))S(t, φk)

−h2(t)φ2(t, R(t, φk))R(t, φk)− p(t)x(t, φk)− q(t)

×
(∫ T̃ (k)

−∞
k(u− t)x(u, φk)du+

∫ s
(k)
q

T̃ (k)
k(u− t)x(u, φk)du

+
∫ t

s
(k)
q

k(u− t)x(u, φk)du
)n]

� x(t, φk)

[

−D(t)+ h1(t)φ1(t, S(t, φk))S(t, φk)

−h2(t)φ2(t, R(t, φk))R(t, φk)− p(t)x(t, φk)− q(t)

×
(

H
(k)

1

∫ T̃ (k)−t

−∞
k(s) ds +My

∫ s
(k)
q −t

−∞
k(s) ds

+ ε0

∫ 0

−∞
k(s) ds

)n]

� x(t, φk)
[ −D(t)+ h1(t)φ1(t, (S

∗(t, φk)− ε0))(S(t, φk)− ε0)

−h2(t)φ2(t, (R
∗(t, φk)+ ε0))(R

∗(t, φk)+ ε0)− ε0p(t)− (2ε0)
nq(t)

]

= x(t, φk)ψε0(t).
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Integrating from T + s
(k)
q + σ 0 to t (k)q for any k � N2 and q � K

(k)

3 we obtain

x(t(k)q , φk) � x(T + s(k)q + σ 0, φk) exp
∫ t

(k)
q

T+s(k)q +σ 0
ψε0(t)dt.

Hence, by (26) and (27), we finally have

�x

(k + 1)2
� �x

(k + 1)2
exp

∫ t
(k)
q

T+s(k)q +σ 0
ψε0(t)dt >

�x

(k + 1)2
,

which leads to a contradiction. The proof is completed.

3. Main results

Theorem 3.1. Suppose that (12) holds, in which (S∗(t), R∗(t)) is the positive
ω–periodic solution of system (7). Then system (1) is permanent.

Proof. The proof is obvious, in fact, it follows from lemmas 2.4–2.7. This com-
pletes the proof.

Let ε(� 1) be some positive constant and

λ(t) = −D(t)+ h1(t)φ1(t, (S
∗(t)+ ε))(S∗(t)+ ε)

−h2(t)φ1(t, (R
∗(t)− ε))(R∗(t)− ε).

Theorem 3.2. Suppose that

Aω

( −D(t)+ h1(t)φ1(t, S
∗(t))S∗(t)− h2(t)φ2(t, R

∗(t))R∗(t)
)

� 0 (39)

and

l =
∫ 0

−∞
k(s) exp{λUs}ds < ∞, (40)

where (S∗(t), R∗(t)) is the positive ω–periodic solution of system (7). Then for
any solution (S(t), R(t), x(t)) of system (1), x(t) → 0 as t → ∞.

Proof. We shall prove that limt→∞ x(t) = 0. In fact, we know that for any given
0 < ε < 1(ε > ε), there exists ε0 > 0 such that

Aω

( −D(t)+ h1(t)φ1(t, (S
∗(t)+ ε))(S∗(t)+ ε)− h2(t)φ1(t, (R

∗(t)− ε)) (41)

(R∗(t)− ε)− lεn

2
q(t)

)
� −1

2
lεn

∫ ω

0
q(t)dt < −ε0.
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Choose a constant τ1 > 0 such that

∫ 0

−τ1

k(s) exp(λUs) ds > n

√
l

2
. (42)

For any t � T + τ1(T > T7), by (1) we have

x′ � x
( −D(t)+ h1(t)φ1(t, S(t))S(t)− h2(t)φ2(t, R(t))R(t)

)
(43)

� x
( −D(t)+ h1(t)φ1(t, (S

∗(t)+ ε))(S∗(t)+ ε)

−h2(t)φ1(t, (R
∗(t)− ε))(R∗(t)− ε)

)

= xλ(t).

Hence, by (42), for any t � t + s � T + τ1, we obtain

x′ � x

[

λ(t)− q(t)

(∫ 0

−τ1

k(s)x(t + s) ds
)n]

� x

[

λ(t)− q(t)

(∫ 0

−τ1

k(s) exp(λUs) ds
)n

xn
]

< x
[
λ(t)− 1

2
lq(t)xn

]
.

If x(t) � ε for all t � T + 2τ1, then we have

x′ < x
[
λ(t)− 1

2
lq(t)εn

]
. (44)

Consequently, by (41) we obtain

x(t) < x(T + 2τ1) exp
∫ t

T+2τ1

[λ(s)− 1
2
lq(s)εn]ds → 0

as t → ∞, which leads to a contradiction. Hence, there is a t1 � T + 2τ1 such
that x(t1) < ε.

Let M(ε) = maxt�0{|λ(t)| + 1
2 lq(t)ε

n}. We note that M(ε) is bounded for
ε ∈ [0, 1]. We then show that

x(t) � ε exp(M(ε)ω) for t � t1. (45)

Otherwise, there are t3 > t2 > t1 such that x(t3) > ε exp(M(ε)ω), x(t2) = ε and
x(t) > ε for all t ∈ (t2, t3]. Let θ � 0 be an integer such that t3 ∈ (t2 + θω, t2 +
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(θ + 1)ω]. Then from (45) we have

ε exp(M(ε)ω) < x(t3)

� x(t2) exp
∫ t3

t2

[λ(t)− 1
2
lq(t)εn]dt

= ε exp
( ∫ t2+θω

t2

+
∫ t3

t2+θω

)

[λ(t)− 1
2
lq(t)εn]dt

< ε exp
( ∫ t3

t2+θω
[λ(t)− 1

2
lq(t)εn]dt

)

< ε exp(M(ε)ω).

This leads to a contradiction. Hence, inequality (45) holds. Further, in view of
the arbitrariness of ε, we have x(t) → 0 as t → ∞. This completes the proof.

4. Discussion

In this paper, we have considered a chemostat model with a periodic
nutrient and antibiotic input. Further, we assume a periodic chemostat environ-
ment and the total toxic action on the microorganism in our model. Obviously,
we note that

Aω

( −D(t)+ h1(t)φ1(t, S
∗(t))S∗(t)− h2(t)φ2(t, R

∗(t))R∗(t)
)

is a threshold parameter for the permanence of system (1). Here (S∗(t), R∗(t)) is
the positive ω–periodic solution of system (7).
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